Equipes
Equipes de recherche :
SaAB
Scidyn
Plateformes :
RECORD
Genotoul Bioinfo
Sigenae
Pôle IMABS
Membres
Séminaire & Actualités
Offres d'emplois
Contact
Thèses & postdocs
Publications
Logiciels
Intranet
Light
Dark
Automatic
deep learning
Can Neural Networks be used to Predict Cross-Species Annotations of Chromatin Regulation ?
Maillard Noémien
,
Klopp Christophe
,
Donnadieu Cécile
,
Riquet Juliette
,
Fève Katia
,
Julie Demars
,
Mourad Raphaël
Annotations
cross-species
deep learning
Deep learning methods for multi-horizon long-term forecasting of Harmful Algal Blooms
Silvia Martín-Suazo
,
Jesús Morón-López
,
Stanislav Vakaruk
,
Amit Karamchandani
,
Juan Antonio Pascual Aguilar
,
Alberto Mozo
,
Sandra Gómez-Canaval
,
Meritxell Vinyals
,
Juan Manuel Ortiz
HAL
Citation
DOI
deep learning
Chlorophyll
Harmful algae bloom
Monitoring
Time-series
Forecasting
Semi-supervised learning with pseudo-labeling compares favorably with large language models for regulatory sequence prediction
Han Phan
,
Céline Brouard
,
Raphaël Mourad
HAL
PDF
Citation
DOI
regulatory genomics deep learning semi-supervised learning
regulatory genomics
deep learning
semi-supervised learning
Prioritize Regulating Variants in a Quantitative Trait Locus (QTL)
Noémien Maillard
,
Juliette Riquet
,
Katia Feve
,
Raphaël Mourad
,
Julie Demars
pig genetic annotation
artificial intelligence
deep learning
Cross-species use of neural networks to improve pig genome annotation -a proof of concept
Noémien Maillard
,
Juliette Riquet
,
Katia Feve
,
Julie Demars
,
Raphaël Mourad
pig genetic annotation
artificial intelligence
deep learning